
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41228 124

Effectiveness Estimation of Object Oriented

Software: A Revisit

Pooja Gupta
1
, Dr. Namrata Dhanda

2

Computer Science and Engineering, Goel Institute of Technology and Management, Lucknow, India
1

Associate Professor and Head of Department, Department of CSE and IT, Goel Institute of Technology and

Management, Lucknow, India
2

Abstract: Effectiveness has always been an indefinable concept. Its truthful measurement or assessment is a complex

exercise for the reason that of the various potential factors influencing effectiveness. It has been find out from

systematic literature review that area researchers, quality controllers and industry personnel had made significant

efforts to estimate software effectiveness but at the source code level. Calculating effectiveness at source code level

directs to late arrival of desired information. An exact measure of software quality fully depends on effectiveness

estimation. This paper shows the results of a systematic literature review conducted to collect related evidence on

effectiveness estimation of object oriented software. In this revisit paper, our objective is to find the known complete

and comprehensive software effectiveness estimation model and related framework for estimating the effectiveness of

object oriented software at an initial stage of development life cycle.

Keywords: Effectiveness, Quality, Object Oriented properties, Quality Factors.

I. INTRODUCTION

At present software development industry, although

knowing the benefits as well as necessity of producing

quality software to end users, expected level of product‘s

quality are becoming more demanding and vital.

According to ISO 9126 ‗Software quality is the degree to

which a system, component, or process meets customer or

user needs or expectations‘. Software quality is

conformance to requirements and fitness for use, where

product and corresponding artifacts meet the needs and

expectations of the user [8]. With the increasing size of

software applications, software development industry are

lacking to produce the quality software and even several

time a few product quality attributes are ignored [4].

In this present highly competitive software development

industry and companies are frequently trying to achieve

the release dead line that generally reduces the product

quality. Therefore the delivered software product may not

be appropriately checked for the probable defects.

Software effectiveness is highly related to product quality

and always plays a crucial role to produce best quality,

high class and trustworthy software product within time

and available budget [1] [2]. Effectiveness is one of the

important notions in design and development for software

programs and modules [3]. To design and develop a good

quality and effective software product, effectiveness

always play a significant role. Estimating software

effectiveness at early stage in the software development

life cycle may significantly reduce the overall

development cost.

Effectiveness has been defined ―fitness for use‖. Other

definitions focus on the utility of the product or service.

I.I McCall’s Quality Model

The McCall quality model given in the year 1977 has three

major perspectives for defining and identifying the quality

of a software product [14]: product revision (ability to

undergo changes), product transition (adaptability to new

environments) and product operations (its operation

characteristics). In all these perspectives effectiveness

plays important role to measure software quality.

I.II Boehm’s Quality Model (1978)

Boehm's model is similar to the McCall Quality Model in

that it also presents a hierarchical quality model structured

around high-level characteristics, intermediate level

characteristics, primitive characteristics - each of which

contributes to the overall quality level. [9, 16]. In Boehm‘s

Quality Model effectiveness uses as is utility of software

product.

I.III Dromey's Quality Model

Dromey‘s is focusing on the relationship between the

quality attributes and the sub-attributes, as well as

attempting to connect software product properties with

software quality attributes [6, 14, 18]. In this model

effectiveness is defined as the products or services

capability to meet customer expectations explicit or not,

where software effectiveness is identified independent of

any measurable characteristics.

II. RELATED WORK

Effectiveness can be predicted as soon as the system is

specified. Freedman proposed domain effectiveness to

address the problem of input inconsistency and output

inconsistency, which involved use of the concepts of

Observability and controllability [4, 19]. The ISO 9126

standard was based on the McCall and Boehm models [20,

21, 24].

Besides being structured in basically the same manner as

these models ISO 9126 also includes effectiveness as a

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41228 125

parameter, as well as identifying both internal and external

quality characteristics of software products. Dromey‘s is

focusing on the relationship between the quality attributes

and the sub-attributes, as well as attempting to connect

software product properties with software quality

attributes. Voas defined that effectiveness of a program is

a prediction of the tendency for failures to be observed

during random black-box testing when faults are present

[25, 26]. They used DRR to indicate the inexplicit

information loss, the bigger the DRR, the more

information loss and so the effectiveness is smaller. In

object-oriented software, Baudry took the number of class

interactions in a UML class diagram as effectiveness

measure to indicate the potential conflict that may occur in

test, the more class interactions the lower the effectiveness

[5]. Software structure has direct effect on test. Some

complexity measures are assumed to imply the number of

the test cases in term of structural coverage and so can

indicate the effort to test the program to a certain degree.

Richard defined effectiveness as the number of test cases

that needed to satisfy certain test criteria, and computed it

on the program control flow [7, 13]. Yeah accurately count

the number of the test cases that needed to cover the

program and introduced block normalization and structural

normalization before the counting that based on data flow

[10]. Abdullah used information transfer of between

component and its context to indicate the effectiveness of

certain component [11].

Fault/failure model reflects the behavioral characteristics

of the software during testing. Reference [12] defined

effectiveness as a prediction of the probability that

existing faults will be revealed during testing given an

arbitrary input selection criterion C. PIE is proposed to

analysis the sensitivity of statement location by statically

analysis its execution rate (E), infection rate (I) and

propagation rate (P), which can indicate the effort to

execute the test to gain certain confidence. But the

computation of PIE is quite complex. Lin [14] reduced the

estimation of the probability estimate by analyzing the

semantic of the code and program structure. Huda [4] used

one sample test suite to estimate the PIE rate. These

method decreases the computation complexity with the

cost of precision loss.

III. DESIGN PROPERTIES THAT INFLUENCES

QUALITY

Object oriented technology direct the designers and

developers what to take and what to avoid from. A

Number of measures have been defined so far to assess

object oriented design. There are a range of important

themes of object oriented design that are recognized to be

the basis of internal quality of object oriented software and

help in the context of measurement. These themes

extensively take account of encapsulation, coupling,

cohesion and inheritance [16]. Encapsulation is the

mechanism to hide the internal specification of an object

and shows only the external interface. This means that all

that is seen of an object is its interface, namely the

operations we can perform on the object. Information

hiding is the process of hiding all the information about

the module unless it is specifically declared publicly‖.

Information hiding gives rise to encapsulation in object

oriented language [15].

Inheritance is an approach where an object acquires the

characteristics from another object by sharing of attributes

and operations among classes through their hierarchical

relationship [22]. The new classes of objects that inherit

much of their behavior from previously defined classes.

Inheritance is a form of reuse that enable a process of

development to define objects incrementally by reusing

previously defined objects as the basis for new objects

[23].

Polymorphism is an important concept that has a

capability to build a flexible system. Polymorphism

means, the ability to have several forms, which is to carry

out different processing steps by the operations having

same messages. Polymorphism allows the implementation

of given operations, which are dependent on the object

that contains the operations; an operation can be

implemented in different ways in different classes [27].

The two more, most important design properties may be

included, that have been generally used in designing of the

software that is Coupling and Cohesion.

Coupling is the process to interact or communicate

between two objects by passing messages. It refers to the

degree of association from one object to another. It shows

the relationship or interdependency between modules.

Coupling may assess the number of collaboration between

classes or the number of messages passed between objects

[28].

Cohesion is the process to measures the degree of

connectivity among the elements of a single class or object

[17]. It refers to the degree, to which the methods in a

class are related to each other. The internal consistency

occurs within the parts of the design, and it is focused on

data that is encapsulated within an object and how the

methods communicate with data to provide well bounded

behavior [15].

IV. EFFECTIVENESS AT DESIGN PHASE

Quantification Programming methodology is based on

objects that involved functions and procedures, this

concept allows individual object to organize and group

themselves together into class. That requires the

effectiveness to be revealed because of the complex

structure of object oriented development system because

traditional testing approach is ineffective in this system.

Practitioners incessantly support that effectiveness should

be planned early in the design phase. So it is important to

identify object oriented design artifacts to quantify

effectiveness measures as early as possible in development

life cycle. During identification of design factors which

have positive impact on effectiveness estimation, a

pragmatic view should be considered. If we consider all

factors and measures then they become more complicated,

ineffective and time consuming. So need to identify

effectiveness factors and measures which affect the

activity positively and directly [24]. In order to estimating

effectiveness, its direct measures are to be identified.

Design level factors like abstraction, encapsulation,

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41228 126

inheritance, cohesion, coupling etc. will also be

investigated keeping in view their impact on overall

effectiveness. This process identifies object oriented

design constructs that are used during design phase of

development lifecycle and serve to define a variety of

effectiveness factors. The contribution of each object

oriented design characteristics is analyzed for

improvement in design effectiveness.

Table1: OO Design Parameters Contributing in Effectiveness Estimation At Design Phase: A

Critical Look

Design Parameters →

C
o

h
es

io
n

C
o

u
p

li
n

g

E
n

ca
p

su
la

ti
o

n

In
h

er
it

a
n

ce

A
b

st
ra

ct
io

n

Author/Study ↓

MC Gregor et al. (1996) √ √

Bruce & Shi(1998) √ √

B.Pettichord(2002) √ √

Baidry et al.(2002) √ √

M Bruntik (2004) √

S.Mouchawrab (2005) √ √ √

I.Ahson et al.(2007) √ √ √ √

Nazir et al.(2005) √ √ √ √

Suhel et al.((2012) √ √ √ √ √

Khan et al. (2012) √ √ √ √

Nikfard &Babak(2013) √ √ √

Abdullah et al.((2014) √ √ √ √

M. Huda et al.((2015) √ √ √ √

V. CONCLUSION

With growing complexity, pervasiveness and criticality of

software, building reliable and quality end software is

becoming more and more challenging. Moreover, the

advancement in the software development process has

been accelerated drastically in the last couple of decades.

As a result, the complexity of applications and

environments has been substantially increased and

schedules have been pinched. Under these circumstances,

software quality tends to suffer. In the face of intense

competitive pressure, a comprehensive and rational

strategy to achieve high effectiveness will be a strategic

advantage-not a bottleneck. The foregoing analysis implies

that effectiveness results from good Software Engineering

practice and an effective software process.

Improving software effectiveness has become an

important objective in order to reduce the number of

defects that result from poorly designed software.

Undoubtedly, effectiveness is a key factor to software

quality and security, and plays an important role in

delivering safe and quality software. It is an obvious fact

that by estimating effectiveness early, a decision may be

taken to incorporate changes at design phase. In order to

fulfill the immense need of commonly accepted set of the

factors affecting software effectiveness, an effort has been

made in this paper in the form of a set of effectiveness

factors early in design phase.

ACKNOWLEDGMENT

The heading of the Acknowledgment section and the

References section must not be numbered.

Causal Productions wishes to acknowledge Michael Shell

and other contributors for developing and maintaining the

IEEE LaTeX style files which have been used in the

preparation of this template.

REFERENCES

[1] Amin, A. and Moradi, S. (2013) A Hybrid Evaluation Framework
of CMM and COBIT for Improving the Software Development

Quality.

[2] Natasha Sharygina , James C. Browne, and Robert P. Kurshan, ―A
Formal Object-Oriented Analysis for Software: Design for

Verification‖, 2011, pp:1-15

[3] Abdullah, Dr, Reena Srivastava, and M. H. Khan. "Testability
Estimation of Object Oriented Design: A Revisit". International

Journal of Advanced Research in Computer and Communication

Engineering, Vol. 2, Issue 8, pages 3086-3090, August 2013.

[4] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Evaluating

Effectiveness Factor of Object Oriented Design: A Testability
Perspective. International Journal of Software Engineering &

Applications (IJSEA), 6, 41-49.

http://dx.doi.org/10.5121/ijsea.2015.6104
[5] IEEE Press (1990) IEEE Standard Glossary of Software

Engineering Technology. ANSI/IEEE Standard 610.12-1990.

[6] Nikolaos Tsantalis, Alexander Chatzigeorgiou, ―Predicting the
Probability of Change in Object-Oriented Systems‖, IEEE

Transactions on Software Engineering, VOL. 31, NO. 7, July 2005,

pp: 601-614.
[7] Abdullah, Dr, M. H. Khan, and Reena Srivastava. ―Testability

Measurement Model for Object Oriented Design (TMMOOD)‖.

International Journal of Computer Science & Information
Technology (IJCSIT), Vol. 7, No 1, February 2015, DOI:

10.5121/ijcsit.2015.7115.

[8] ISO (2001) ISO/IEC 9126-1: Software Engineering—Product
Quality—Part-1: Quality Model. Geneva.

[9] Stephanie Gaudan , Gilles Motet and Guillaume Auriol , ―A new

structural complexity metrics applied to Object Oriented design
assessment‖, http://www.lesia.insa-

toulouse.fr/~motet/papers/2007_ISSRE_GMA.pdf.

http://dx.doi.org/10.5121/ijsea.2015.6104
http://www.lesia.insa-toulouse.fr/~motet/papers/2007_ISSRE_GMA.pdf
http://www.lesia.insa-toulouse.fr/~motet/papers/2007_ISSRE_GMA.pdf

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41228 127

[10] Everald E. Mills, ―Software Metrics‖, SEI Curriculum Module SEI-

CM-12-1.1, Software Engineering Institute, Dec 1988, pp: 1-43.
[11] Haifeng Li Minyan Lu Qiuying Li , ―Software Metrics Selecting

Method Based on Analytic Hierarchy Process‖, Sixth International

Conference on Quality Software, 2006. QSIC 2006, 27-28 Oct.
2006, pp: 337 – 346, ISSN: 1550-6002, ISBN: 0-7695-2718-3.

[12] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Metric Based

Testability Estimation Model for Object Oriented Design: Quality
Perspective. Journal of Software Engineering and Applications, 8,

234-243. http://dx.doi.org/10.4236/jsea.2015.84024

[13] Offutt, R. and R. Alexander, (2001): A fault Model for Subtype
Inheritance and Polymorphism. In 12th International Symposium,

Software Reliability Engineering, Nov 27-30, 2001, IEEE, pp. 84-

93.
[14] Jagdish Bansiya, ―A Hierarchical Model for Object Oriented

Design Quality Assessment‖, IEEE Transaction of Software

Engineering, Volume 28, No. 1, January 2002, and pp: 4-17

[15] Binder, R.V. (1994) Design for Testability in Object-Oriented

Systems. Communications of the ACM, 37, 87-101.

http://dx.doi.org/10.1145/182987.184077.
[16] Abdullah, Dr, Reena Srivastava, and M. H. Khan. "Testability

Measurement Framework: Design Phase Perspective". International

Journal of Advanced Research in Computer and Communication
Engineering, Vol. 3, Issue 11, Pages 8573-8576 November 2014.

[17] Yong Cao Qingxin Zhu. Improved metrics for encapsulation based

on information hiding. DOI: 10.1109/ICYCS.2008.76, The 9th
International Conference for Young Computer Scientists, IEEE

computer society 2008, p: 742-724.

[18] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Quantifying
Reusability of Object Oriented Design: A Testability Perspective.

Journal of Software Engineering and Applications, 8, 175-183.

http://dx.doi.org/10.4236/jsea.2015.84018
[19] Sch aril N., Black Andrew P., Ducasse S. Object oriented

Encapsulation for Dynamically Typed Languages. OOPSLA 2004,

ACM, pp: 130–139.

[20] Abdullah, Dr, Reena Srivastava, and M. H. Khan. ―Modifiability: A

Key Factor To Testability‖, International Journal of Advanced

Information Science and Technology, Vol. 26, No.26, Pages 62-71
June 2014.

[21] Usha Chhillar, Shuchita Bhasin , ― A New Weighted Composite

Complexity Measure for Object-Oriented Systems‖, International
Journal of Information and Communication Technology Research

Volume 1 No. 3, July 2011,pp: 101-108, ISSN-2223-4985.

[22] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Testability
Quantification Framework of Object Oriented Software: A New

Perspective. International Journal of Advanced Research in
Computer and Communication Engineering, 4, 298-302.

http://dx.doi.org/10.17148/IJARCCE.2015.4168

[23] Dromey, R.G.: A Model for Software Product Quality. IEEE
Transaction on Software Engineering 21(2), 146–162 (1995).

[24] Huda, M., Arya, Y. D. S., Khan, M. H., & Dima, M. O. Scientific

Research.
[25] Abdullah, Dr, M. H. Khan, and Reena Srivastava. ―Flexibility: A

Key Factor To Testability‖, International Journal of Software

Engineering & Applications (IJSEA), Vol.6, No.1, January 2015.
DOI: 10.5121/ijsea.2015.6108

[26] Fiondella, L.; Gokhale, S.S., ―Software quality model with bathtub-

shaped fault detection rate‖ Reliability and Maintainability
Symposium (RAMS), 2011 Proceedings - Annual , 24-27 Jan.

2011,pp: 1 – 6, ISBN: 978-1-4244-8857-5.

[27] Huda, M., Arya, Y.D.S. and Khan, M.H. (2014) Measuring
Testability of Object Oriented Design: A Systematic Review.

International Journal of Scientific Engineering and Technology

(IJSET), 3, 1313-1319.
[28] Mohan, K.K.; Verma, A.K.; Srividya, A., ―Software effectiveness

estimation through black box and white box testing at prototype

level ―, 2nd International Conference on Reliability, Safety and
Hazard (ICRESH), 14-16 Dec. 2010, pp: 517 - 522, ISBN: 978-1-

4244-8344-0.

http://dx.doi.org/10.4236/jsea.2015.84024
http://dx.doi.org/10.1145/182987.184077
http://dx.doi.org/10.4236/jsea.2015.84018
http://dx.doi.org/10.17148/IJARCCE.2015.4168

